Friday 15 December 2017

Autoregressive moving average arma model


Modelagem ARMA A funcionalidade de modelagem ARMA automatiza as etapas de construção do modelo ARMA: adivinhar parâmetros iniciais, validação de parâmetros, teste de boa qualidade e diagnóstico de resíduos. Para usar essa funcionalidade, selecione o ícone correspondente na barra de ferramentas (ou o item do menu). Aponte para a amostra de dados em sua planilha, selecione a ordem correspondente do modelo de componente autorregressivo (AR) e a ordem do modelo de componente de média móvel , Testes de qualidade de ajuste, diagnóstico residual e, finalmente, designar um local na sua planilha para imprimir o modelo. Após a conclusão, a função de modelagem ARMA emite os parâmetros dos modelos selecionados e os cálculos de testes selecionados no local designado da sua planilha. Modelos ARMA (p, q) modestos da Análise Estratégica Automotiva (p, q) - Parte 2 Na Parte 1 consideramos o modelo de ordem Autoregressivo P, também conhecido como o modelo AR (p). Nós o apresentamos como uma extensão do modelo de caminhada aleatória em uma tentativa de explicar correlação serial adicional em séries temporais financeiras. Em última análise, percebemos que não era suficientemente flexível para realmente capturar toda a autocorrelação nos preços de fechamento da Amazon Inc. (AMZN) e do SampP500 US Equity Index. O principal motivo para isso é que ambos esses ativos são condicionalmente heterossegativos. O que significa que eles não são estacionários e têm períodos de variação variável ou aglomeração de volatilidade, que não é levado em consideração pelo modelo AR (p). Em futuros artigos, acabaremos por construir os modelos da Média Mover Integrada Autoregressiva (ARIMA), bem como os modelos condicionalmente heterossejidos das famílias ARCH e GARCH. Esses modelos nos fornecerão nossas primeiras tentativas realistas de previsão dos preços dos ativos. Neste artigo, no entanto, iremos apresentar o modelo da Mente Mover da ordem q, conhecido como MA (q). Este é um componente do modelo ARMA mais geral e, como tal, precisamos compreendê-lo antes de avançar. Eu recomendo que você leia os artigos anteriores na coleção Time Series Analysis, se você não tiver feito isso. Todos podem ser encontrados aqui. Modelos de média móvel (MA) q Um modelo de média móvel é semelhante a um modelo autoregressivo, exceto que, em vez de ser uma combinação linear de valores da série temporária passada, é uma combinação linear dos termos de ruído branco passados. Intuitivamente, isso significa que o modelo MA vê tais choques de ruído branco aleatórios diretamente em cada valor atual do modelo. Isso contrasta com um modelo de AR (p), onde os choques de ruído brancos só são vistos indiretamente. Através de regressão em termos anteriores da série. Uma diferença fundamental é que o modelo MA só verá os últimos choques q para qualquer modelo particular de MA (q), enquanto que o modelo AR (p) tomará em consideração todos os choques anteriores, embora de forma decrescente. Definição Matemática, o MA (q) é um modelo de regressão linear e está estruturado de forma semelhante a AR (p): modelo médio em movimento da ordem q Um modelo de série temporal, é um modelo médio móvel de ordem q. MA (q), se: begin xt wt beta1 w ldots betaq w end Onde é o ruído branco com E (wt) 0 e variância sigma2. Se considerarmos o operador de deslocamento para trás. (Veja um artigo anterior), então podemos reescrever o acima como uma função phi de: begin xt (1 beta1 beta2 2 ldots betaq q) wt phiq () wt end Utilizaremos a função phi em artigos posteriores. Propriedades de segunda ordem Tal como acontece com AR (p), a média de um processo MA (q) é zero. Isso é fácil de ver como a média é simplesmente uma soma de termos de ruído branco, que são todos eles próprios zero. Começar texto enspace mux E (xt) soma E (wi) 0 fim começar texto enspace sigma2w (1 beta21 ldots beta2q) texto final enspace rhok esquerda 1 texto enspace k 0 sum betai beta sumq beta2i texto enspace k 1, ldots, q 0 texto O espaçador k gt q acaba direito. Onde beta0 1. Agora, vamos gerar alguns dados simulados e usá-lo para criar correlogramas. Isso tornará a fórmula acima para rhok um pouco mais concreta. Simulações e Correlogramas Comece com um processo MA (1). Se configuramos beta1 0.6, obtemos o seguinte modelo: Tal como acontece com os modelos AR (p) no artigo anterior, podemos usar R para simular uma série e depois traçar o correlograma. Uma vez que tínhamos muita prática na série anterior de série de séries de séries de séries de execução, vou escrever o código R na íntegra, em vez de dividi-lo: a saída é a seguinte: como vimos acima na fórmula para rhok , Para k gt q, todas as autocorrelações devem ser zero. Desde q 1, devemos ver um pico significativo em k1 e, em seguida, picos insignificantes subseqüentes a isso. No entanto, devido ao viés de amostragem, devemos esperar ver 5 (marginalmente) picos significativos em um gráfico de autocorrelação de amostra. Este é precisamente o que o correlograma nos mostra neste caso. Temos um pico significativo em k1 e depois picos insignificantes para k gt 1, exceto em k4 onde temos um pico marginalmente significativo. Na verdade, esta é uma maneira útil de ver se um modelo MA (q) é apropriado. Ao dar uma olhada no correlograma de uma série específica, podemos ver quantos atrasos sequenciais não-zero existem. Se houver tais atrasos, então podemos tentar legítimamente ajustar um modelo de MA (q) a uma determinada série. Uma vez que temos evidências de nossos dados simulados de um processo MA (1), agora tentaríamos ajustar um modelo MA (1) aos nossos dados simulados. Infelizmente, não há um comando ma equivalente para o comando autor modelo modelo ar em R. Em vez disso, devemos usar o comando arima mais geral e configurar os componentes autoregressivos e integrados em zero. Fazemos isso criando um vetor 3 e configurando os dois primeiros componentes (os parâmetros autogressivos e integrados, respectivamente) para zero: recebemos algum resultado útil do comando arima. Em primeiro lugar, podemos ver que o parâmetro foi estimado como o chapéu 0.602, que é muito próximo do valor verdadeiro de beta1 0.6. Em segundo lugar, os erros padrão já foram calculados para nós, tornando-o direto calcular os intervalos de confiança. Em terceiro lugar, recebemos uma variância estimada, probabilidade de logaritmo e Critério de Informação Akaike (necessário para comparação de modelo). A principal diferença entre arima e ar é que arima estima um termo de intercepção porque não subtrai o valor médio da série. Portanto, precisamos ter cuidado ao realizar previsões usando o comando arima. Bem, volte para esse ponto mais tarde. Como uma verificação rápida calcularam os intervalos de confiança para o chapéu: podemos ver que o intervalo de confiança 95 contém o verdadeiro valor do parâmetro de beta1 0,6 e, portanto, podemos julgar o modelo em um bom ajuste. Obviamente, isso deve ser esperado, já que simulamos os dados em primeiro lugar. Como as coisas mudam se modificarmos o sinal de beta1 para -0.6. Realizamos a mesma análise: A saída é a seguinte: podemos ver que na k1 nós temos um significado Pico no correlograma, exceto que mostra correlação negativa, conforme esperado de um modelo de MA (1) com primeiro coeficiente negativo. Mais uma vez, todos os picos além de k1 são insignificantes. Permite um modelo MA (1) e estimar o parâmetro: hat -0.730, que é uma pequena subestimação de beta1 -0.6. Finalmente, vamos calcular o intervalo de confiança: podemos ver que o verdadeiro valor do parâmetro de beta1-0.6 está contido dentro do intervalo de confiança 95, fornecendo-nos evidência de um bom ajuste do modelo. Vamos executar o mesmo procedimento para um processo MA (3). Desta vez, devemos esperar picos significativos em k e picos insignificantes para k gt 3. Vamos usar os seguintes coeficientes: beta1 0,6, beta2 0,4 e beta3 0,2. Permite simular um processo MA (3) deste modelo. Ive aumentou o número de amostras aleatórias para 1000 nesta simulação, o que torna mais fácil ver a verdadeira estrutura de autocorrelação, à custa de tornar a série original mais difícil de interpretar: a saída é a seguinte: como esperado, os primeiros três picos são significativos . No entanto, também é o quarto. Mas podemos sugerir legitimamente que isso pode ser devido ao viés de amostragem, pois esperamos que 5 dos picos sejam significativos além do kq. Vamos agora ajustar um modelo MA (3) aos dados para tentar e estimar parâmetros: as estimativas hat 0.544, hat 0.345 e hat 0.298 são próximas dos valores reais de beta10.6, beta20.4 e beta30.3, respectivamente. Também podemos produzir intervalos de confiança usando os respectivos erros padrão: em cada caso, os 95 intervalos de confiança contêm o verdadeiro valor do parâmetro e podemos concluir que temos um bom ajuste com nosso modelo MA (3), como seria de esperar. Dados Financeiros Na Parte 1 consideramos a Amazon Inc. (AMZN) e o SampP500 US Equity Index. Nós montamos o modelo AR (p) para ambos e descobrimos que o modelo não conseguiu efetivamente capturar a complexidade da correlação serial, especialmente no elenco do SampP500, onde os efeitos de memória longa parecem estar presentes. Eu não vou traçar os gráficos novamente para os preços e autocorrelação, em vez disso eu vou encaminhá-lo para a publicação anterior. Amazon Inc. (AMZN) Comece tentando encaixar uma seleção de modelos de MA (q) para AMZN, ou seja, com q in. Como na Parte 1, use o quantmod para baixar os preços diários do AMZN e, em seguida, convertê-los em um fluxo de retorno de log de preços de fechamento: Agora que temos o fluxo de retorno do registro, podemos usar o comando arima para ajustar MA (1), MA (2) e MA (3) e, em seguida, estimar os parâmetros de cada um. Para MA (1), temos: podemos traçar os resíduos dos retornos diários do log e do modelo ajustado: observe que temos alguns picos significativos nos atrasos k2, k11, k16 e k18, indicando que o modelo MA (1) é Improvável que seja um bom ajuste para o comportamento do retorno AMZN, uma vez que isso não parece uma realização de ruído branco. Vamos tentar um modelo MA (2): ambas as estimativas para os coeficientes beta são negativas. Permite traçar os resíduos mais uma vez: podemos ver que existe uma autocorrelação quase zero nos primeiros atrasos. No entanto, temos cinco picos marginalmente significativos nos laços k12, k16, k19, k25 e k27. Isso sugere que o modelo MA (2) esteja capturando uma grande parte da autocorrelação, mas não todos os efeitos de memória longa. Que tal um modelo de MA (3) Mais uma vez, podemos traçar os resíduos: o gráfico de residual de MA (3) parece quase idêntico ao do modelo MA (2). Isso não é surpreendente, assim como a adição de um novo parâmetro a um modelo que aparentemente explicou muitas correlações em atrasos mais curtos, mas isso não terá muito efeito nos atrasos de longo prazo. Toda essa evidência sugere o fato de que um modelo de MA (q) não é provável que seja útil para explicar toda a correlação em série isoladamente. Pelo menos para a AMZN. SampP500 Se você lembrar, na Parte 1, vimos que a estrutura de retorno do diário diferenciado da primeira ordem do SampP500 possuía muitos picos significativos em vários atrasos, tanto curtos quanto longos. Isso proporcionou evidências de heterocedasticidade condicional (ou seja, aglomeração de volatilidade) e efeitos de memória longa. Isso nos leva a concluir que o modelo AR (p) foi insuficiente para capturar toda a autocorrelação presente. Como já vimos acima, o modelo MA (q) foi insuficiente para capturar correlação serial adicional nos resíduos do modelo ajustado para a série de preços de registro diário diferenciada de primeira ordem. Agora tentaremos ajustar o modelo MA (q) ao SampP500. Pode-se perguntar por que estamos fazendo isso é se soubemos que é improvável que seja um bom ajuste. Essa é uma boa pergunta. A resposta é que precisamos ver exatamente como isso não é um bom ajuste, porque este é o processo final que seguiremos quando compararmos modelos muito mais sofisticados, que são potencialmente mais difíceis de interpretar. Comece por obter os dados e convertê-lo em uma série diferenciada de preços de fechamento diários logaritmicamente transformados como no artigo anterior: agora vamos ajustar um modelo MA (1), MA (2) e MA (3) para A série, como fizemos acima para a AMZN. Comece com MA (1): Vamos fazer um gráfico dos resíduos desse modelo ajustado: O primeiro pico significativo ocorre em k2, mas há muitos mais em k. Esta não é claramente uma percepção do ruído branco e, portanto, devemos rejeitar o modelo MA (1) como um potencial bom ajuste para o SampP500. A situação melhora com MA (2) Mais uma vez, vamos fazer um gráfico dos resíduos desse modelo MA (2) ajustado: Enquanto o pico em k2 desapareceu (como esperamos), ainda ficamos com os picos significativos em Muitos desfasamentos nos resíduos. Mais uma vez, achamos que o modelo MA (2) não é um bom ajuste. Devemos esperar, para o modelo MA (3), ver menos correlação serial em k3 do que para o MA (2), mas, mais uma vez, também não devemos esperar nenhuma redução em atrasos adicionais. Finalmente, vamos fazer uma parcela dos resíduos desse modelo MA (3) ajustado: é precisamente o que vemos no correlograma dos resíduos. Daí o MA (3), como com os outros modelos acima, não é um bom ajuste para o SampP500. Próximas etapas. Já examinamos dois modelos principais de séries temporais em detalhes, ou seja, o modelo autogressivo de ordem p, AR (p) e, em seguida, a média móvel da ordem q, MA (q). Nós vimos que eles são ambos capazes de explicar algumas das autocorrelação nos resíduos de preços de registro diários diferenciados de primeira ordem de ações e índices, mas a acumulação de volatilidade e os efeitos de memória longa persistem. Finalmente é hora de chamar nossa atenção para a combinação desses dois modelos, ou seja, a Média de Movimento Autoregressiva da ordem p, q, ARMA (p, q) para ver se isso melhorará a situação. No entanto, teremos que esperar até o próximo artigo para uma discussão completa Clique abaixo para aprender mais sobre. A informação contida neste site é a opinião dos autores individuais com base em sua observação pessoal, pesquisa e anos de experiência. A editora e seus autores não são conselheiros de investimento registrados, advogados, CPAs ou outros profissionais de serviços financeiros e não prestam assessoria jurídica, fiscal, contábil, de investimento ou outros serviços profissionais. A informação oferecida por este site é apenas de educação geral. Como cada situação factual de indivíduos é diferente, o leitor deve procurar seu próprio conselheiro pessoal. Nem o autor nem o editor assumem qualquer responsabilidade ou responsabilidade por quaisquer erros ou omissões e não devem ter responsabilidade nem responsabilidade para qualquer pessoa ou entidade em relação a danos causados ​​ou alegadamente causados ​​direta ou indiretamente pelas informações contidas neste site. Use por sua conta e risco. Além disso, este site pode receber compensações financeiras das empresas mencionadas através de publicidade, programas afiliados ou de outra forma. Taxas e ofertas de anunciantes exibidos neste site mudam com freqüência, às vezes sem aviso prévio. Enquanto nos esforçamos para manter informações precisas e oportunas, os detalhes da oferta podem estar desactualizados. Os visitantes devem assim verificar os termos de tais ofertas antes de participar delas. O autor e sua editora não têm responsabilidade por atualizar informações e negar a responsabilidade pelo conteúdo, produtos e serviços de terceiros, inclusive quando acessados ​​através de hiperlinks e ou propagandas neste site. Processos de erro em média móvel contínuos (erros ARMA) e outros modelos que envolvem atrasos Dos termos de erro podem ser estimados usando instruções FIT e simuladas ou previstas usando instruções SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos auto-correlacionados. A macro AR pode ser usada para especificar modelos com processos de erro auto - gressivo. A macro MA pode ser usada para especificar modelos com processos de erro em média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Note-se que os s são independentes e distribuídos de forma idêntica e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel como onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é definido automaticamente pelo PROC MODELE, pois a função ZLAG deve ser usada para modelos MA para truncar a recursão dos atrasos. Isso garante que os erros atrasados ​​começam em zero na fase de inicialização e não propagam os valores faltantes quando as variáveis ​​do período de inicialização faltam, e garante que os erros futuros sejam zero, em vez de perder durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário geral para modelos ARMA O processo geral ARMA (p, q) tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros da média autorregressiva e móvel para os vários atrasos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes de que a especificação possa ser escrita. Os processos ARMA do vetor também podem ser estimados com PROC MODELO. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de convergência com modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. O cuidado deve ser usado na escolha dos valores iniciais para os parâmetros ARMA. Os valores iniciais de 0,001 para parâmetros ARMA geralmente funcionam se o modelo se adequar bem aos dados e o problema está bem condicionado. Note-se que um modelo de MA pode ser frequentemente aproximado por um modelo AR de alta ordem e vice-versa. Isso pode resultar em colinearidade elevada em modelos mistos de ARMA, o que, por sua vez, pode causar graves condicionamentos nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos em zero (ou para estimativas anteriores razoáveis ​​se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais provavelmente estarão próximos de suas estimativas finais, as estimativas dos parâmetros ARMA podem agora convergir. Finalmente, use outra declaração FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros agora são provavelmente muito próximos das suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os atrasos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SASETS são os seguintes: mínimos quadrados condicionais (procedimentos ARIMA e MODELO) mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) probabilidade máxima (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG Somente procedimento) Hildreth-Lu, que exclui as primeiras observações p (somente procedimento MODEL) Consulte o Capítulo 8, Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As iniciações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODELO. Para erros AR (1), essas iniciais podem ser produzidas como mostrado na Tabela 18.2. Esses métodos são equivalentes em grandes amostras. Tabela 18.2 Inicializações realizadas pelo PROC MODELO: AR (1) ERROS Os atrasos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de maneiras diferentes. Os procedimentos de ARIMA e MODELO seguintes são suportados pelos seguintes procedimentos: mínimos quadrados incondicionais, mínimos quadrados condicionais. O método dos mínimos quadrados condicionais para estimar os termos de erro em média móvel não é otimizado porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos remanescentes iniciais, que se estendem antes do início dos dados, são assumidos como 0, seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Geralmente, essa diferença converge rapidamente para 0, mas para processos em média móveis quase não-reversíveis, a convergência é bastante lenta. Para minimizar este problema, você deve ter muitos dados e as estimativas dos parâmetros da média móvel devem estar bem dentro do intervalo inversível. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: os erros médios em movimento podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) ao processo de média móvel. Um processo de média móvel geralmente pode ser bem-aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A AR Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos autoregressivos. A macro AR faz parte do software SASETS e nenhuma opção especial precisa ser configurada para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equação estrutural ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de autorregressão: autoregresão vetorial irrestrita Autoregresão vetorial restrita Autoriação Univariada Para modelar o termo de erro de uma equação como processo autoregressivo, use a seguinte declaração após a equação: Por exemplo, suponha que Y seja um Função linear de X1, X2 e um erro AR (2). Você escreveria este modelo da seguinte maneira: as chamadas para AR devem vir após todas as equações ao qual o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída da opção LIST para um modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às declarações explicitamente escritas na seção Formulário geral para modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em atrasos selecionados. Por exemplo, se você queria parâmetros autorregressivos nos intervalos 1, 12 e 13, você pode usar as seguintes instruções: Essas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída da opção LIST para um modelo AR com Lags em 1, 12 e 13 O MODELO Lista de Procedimentos da Declaração de Código do Programa Compilado como Pareded PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - REAL. y ERROR. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais de AR usa todas as observações e assume zeros para os atrasos iniciais de termos autorregressivos. Ao usar a opção M, você pode solicitar que o AR use o método de mínimos quadrados incondicionais (ULS) ou máximo (ML). Por exemplo, as discussões desses métodos são fornecidas na seção AR Condições iniciais. Ao usar a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos de autorregressão iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo auto - gressivo à variável endógena, em vez do termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os últimos atrasos de Y para a equação no exemplo anterior, você poderia usar AR para gerar os parâmetros e atrasos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 LIST Opção Saída para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma intercepção e os valores de Y nos cinco períodos mais recentes. Autoregression vetorial sem restrições Para modelar os termos de erro de um conjunto de equações como um processo auto-regressivo de vetor, use a seguinte forma da macro AR após as equações: O nome do nome do processo é qualquer nome que você fornece para que AR use na criação de nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processos para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​sejam únicos. Use um valor curto do nome do processo para o processo se as estimativas dos parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetros menores ou iguais a oito caracteres, mas isso é limitado pelo comprimento do nome do processo. Que é usado como um prefixo para os nomes dos parâmetros AR. O valor variablelist é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que os erros das equações Y1, Y2 e Y3 sejam gerados por um processo auto-regressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código similar para Y2 e Y3: Somente o método de mínimos quadrados condicionais (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em atrasos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no intervalo 2 restrito a 0 e com os coeficientes nos atrasos 1 e 3 sem restrições: você pode modelar as três séries Y1Y3 como um processo auto-regressivo vetorial Nas variáveis ​​em vez dos erros usando a opção TYPEV. Se você quer modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​ou constantes exógenas, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregente do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregente do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não existirem componentes exógenos para o modelo de autoregressão vetorial, incluindo sem interceptações, atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de chamar AR. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo possui 18 (3 3 3 3) parâmetros. Sintaxe da AR Macro Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o processo AR. Se o endolista não for especificado, a lista endógena padrão nomeará. Que deve ser o nome da equação a que o processo de erro AR deve ser aplicado. O valor do nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Se for dado mais de um nome, um processo vetorial irrestrito é criado com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolista padrão nomeará. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos vetoriais AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Autoregression vetorial restrita Você pode controlar quais parâmetros estão incluídos no processo, restringindo a 0 os parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas de AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em atrasos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo afirma que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não de Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas no intervalo 1. Sintaxe de macro AR para vetor vetorial restrito O uso alternativo de AR pode impor restrições sobre um processo de AR vetorial ao chamar AR várias vezes para especificar diferentes termos de AR e atrasos para diferentes Equações. A primeira chamada tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o processo do vetor AR. Especifica a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por informações adicionais especificadas em chamadas AR mais recentes para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolista da primeira chamada para o valor do nome podem aparecer na lista de equações na eqlist. Especifica a lista de equações cujos resíduos estruturais atrasados ​​devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolista da primeira chamada para o valor do nome podem aparecer na varlist. Se não for especificado, varlist é padrão para endolista. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist é padrão para todos os atrasos 1 até nlag. A MA Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos em média móveis. A macro MA é parte do software SASETS e nenhuma opção especial é necessária para usar a macro. O processo de erro em média móvel pode ser aplicado aos erros de equação estrutural. A sintaxe da macro MA é a mesma que a macro AR, exceto que não existe um argumento TYPE. Quando você está usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salve-o no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: as estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um ARMA (1, (1 3)) Processo Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de vetor MA não são necessárias, a sintaxe da macro MA tem o formulário geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolista padrão. É a ordem do processo de MA. Especifica as equações para as quais o processo MA deve ser aplicado. Se mais de um nome for dado, a estimativa de CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Only MCLS is allowed when more than one equation is specified in the endolist . MA Macro Syntax for Restricted Vector Moving-Average An alternative use of MA is allowed to impose restrictions on a vector MA process by calling MA several times to specify different MA terms and lags for different equations. The first call has the general form specifies a prefix for MA to use in constructing names of variables needed to define the vector MA process. specifies the order of the MA process. specifies the list of equations to which the MA process is to be applied. specifies that MA is not to generate the MA process but is to wait for further information specified in later MA calls for the same name value. The subsequent calls have the general form is the same as in the first call. specifies the list of equations to which the specifications in this MA call are to be applied. specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . specifies the list of lags at which the MA terms are to be added.

No comments:

Post a Comment